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It is well known that the work done by external forces on a viscoelastic material is converted 
into a conserved part (potential energy) and a dissipated part, each of which may be divided 
into two other parts: the isotropic one which is connected with volume changes and the 
deviatoric one which is associated with distortions. 

For strain and strain-rate-independent Poisson’s ratio (which is reported to be the case 
for most viscoelastic materials) the time-dependent isotropic and deviatoric moduli differ 
only by a constant factor. Expressing the relaxation moduli by Prony-Dirichlet series 
enables the evaluation of the isotropic and deviatoric parts of the stress-power. These calcu- 
lations are carried out for the case of constant strain-rate uniaxial tension. The positive 
definite terms of the resulting expression stand for the dissipated stress-power and the 
remaining terms-for the conserved stress-power. By integrating over time, the different 
parts of the stress-energy are obtained. 

The ratio of deviatoric part to isotropic part of energy is found to be independent of time 
and equal for both conserved and dissipated energies. 

Results of experiments carried out on Perspex (polymethyl methacrylate) and epoxy- 
resin were used to calculate the different parts of stress-energy. It is found that the ratio of 
dissipated energy to conserved energy is always smaller than unity decreasing for smaller 
strains and strain-rates, The energy computations are practically not affected by the choice 
of the parameters representing the viscoelastic behaviour of material. 

The proposed method can be easily applied to other experimental conditions such as 
relaxation, creep, constant rate of stress or any other loading history. 

LIST OF SYMBOLS 

Bi -material constant 
Ei -material constant 
E(t) -longitudinal relaxation modulus 
Gl( t )  -deviatoric relaxation modulus 
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-isotropic relaxation modulus 
-sum of squared deviations 
-coefficient matrix of normal equations 
-stress-energy per unit volume 
4eviatoric strain 
-deviatoric stress 
-time 
-deviation 
-Kronecker’s delta 
-strain 
-isotropic strain 
-Poisson’s ratio 
-stress 
-isotropic stress 
-time 
-relaxation time. 

I NTRO DU CTlO N 

During loading of a viscoelastic material, the work done by the external 
forces is converted into a conserved part (potential energy) and a dissipated 
part, each of which may be divided into two other parts: the isotropic one 
which is connected with volume changes and the deviatoric one which is 
associated with distortions. 

If we denote by crij(t), ~ t j ( t ) ,  stj(r), &(t) the components of the tensors of 
stress, strain, stress deviator and strain deviator respectively at the time t ,  
the following relations hold: 

The isotropic parts of the stress and strain tensors denoted respectively by 
atj* and EL,* are given by: 

(2) 
at,* = & h 0 a a  

qj* = F t j E a a  

(Repeated Greek index denotes summation and 611 is Kronecker’s delta.) 
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ENERGY BALANCE OF A VISCOELASTIC MATERIAL 139 

The integral operator form of the constitutive relations based on relaxation 
modulus is adopted (cf. Ref. 1 for example): 

f 

0 

(3‘) 
a%* 

u,,*(t) = 2 Gz(t - T)-& s a7 
0 

The functions Gl( t )  and Gz(t) represent the deviatoric and isotropic relaxa- 
tion moduli respectively, at uniform temperature. 

In simple tension with constant strain-rate i (which is the case for most 
experimental devices) the non-vanishing deviatoric components of the stress 
and strain tensors are (v denotes Poisson’s ratio): 

The isotropic components are in this case: 

u11* = u22* = u33* = gull 

€11* = €22* = €33* = &ir(l - 2v) 

Tensile experiments carried out by the author2 on two different viscoelastic 
materials, Perspex and epoxy-resin show that under normal isothermal 
engineering conditions Poisson’s ratio may be considered constant in a rela- 
tively large range of strain and strain-rate values (see also Rigbi’s survey3). 

For constant Poisson’s ratio the relaxation law Eqs. (3) and (3‘) leads to: 

-for the deviatoric components: 

Ull = 241 

-for the isotropic components: 

a11 = 241 

It is easy to show that: 
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140 s. BRULLER 

(Eq. (7) can be obtained from the general relation presented in Ref. 1 putting 
v = const.) 

In addition to Gl(t)  and Gz(t) the longitudinal relaxation modulus E ( f )  
can be defined from : 

8611 
u i i=2  E(t - T ) - - ~ T  87 s 

0 

The following relations between E ( t )  and Gl(t) and Gz( t )  are obtained: 

E ( t )  = (1 + v)Gi(t) 

E ( t )  = (1 - 2 ~ ) G 2 ( t )  

ENERGY BALANCE 

a Constant strain-rate 

For uniaxial tension with constant strain-rate the total stress-power per 
unit volume is given by: 

ci/ = U l l d l l  = slldll + 2SzZdZZ 4- 3Ull*ill* 

ci/ = &Jllill(l + v) + gOllh(1 - 2v) 

(1 1) 

Substitution from Eqs. (4) and ( 5 )  leads to: 

(12) 

where the first term represents the deviatoric stress-power Wi/dr and the second 
term the isotropic stress-power q t .  If we omit tensor index for simpler writing 
Eq. (12) will be: 

w = @(I + v) + Qoi(l - 2 4  (1 2') 

Now, we express the relaxation modulus in the well-known form of a 

(13) 

where Eo and En are m + 1 real constants and the m real relaxation times 7, are 
non-negative. 

Dirichlet-Prony series : 

E(t)  = EO + Ene-t'7a 

We are led to the following stress-strain relation : 

u = 2i[Eot + E,T,(~ - e-t"a)] = uo + ut (14) 2 i =  1 
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ENERGY BALANCE OF A VISCOELASTIC MATERIAL 141 

where : 

The total stress-power will be: 

w = i (  cr0 + $) = ao€ + i -$ (17)  
i =  1 j -  1 

(TI as given by Eq. ( 1  6) is the solution of the differential equation (cf. Ref. 4) : 

Substitution of uo from Eq. (15) and i from Eq. (18)  into Eq. (17)  yields: 

In Eq. (19) the terms of the form u,u, are independent of direction and 
therefore represent the dissipated stress-power, while the remaining terms 
represent the conserved stress-power. 

Integrating Eq. (19) we obtain the dissipated and conserved stress-energy 
and according to Eq. (12’) the four components of the total stress-energy are: 

i) The dissipated deviatoric stress-energy : 

W d d  = $(I + v ) ; ~ { ~ ~ E , T ,  + E , ~ , 2 [ 1  - ( 2  -e-t ’Ta)2]} 

Wcd = %( 1 + v)iz[EOt2 + E,T,~(  I - ept‘rc1)2] 

W d t  = $(I  - 2 ~ ) < ~ { 2 t E , ~ ,  + E,TaZ[1 - ( 2  -fTt’Ta)2]} 

Wci == Q( 1 - 2v)€Z[Eot2 + E,T,~(  I - e-t’r,)2] 

(20) 

ii) The conserved deviatoric stress-energy : 

(21)  

iii) The dissipated isotropic stress-energy : 

(22)  

iv) The conserved isotropic stress-energy : 

(23)  

It should be mentioned that the rate of energy dissipation is given by the 
last term of Eq. (19): 

and its deviatoric and isotropic parts may be evaluated as shown above. 
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1 42 s. B R ~ ~ L L E R  

b Stress relaxation 

If at the time t = 0 the specimen is suddenly stretched until the strain reaches 
the value c(o), the work done by the external forces per unit volume is: 

w = +(o)qo) (25) 

where the stress U(O)  may be calculated from: 

u = 2c(0)E(t)  = 2c(o)(Eo + EactlTa) (26) 

Putting t = 0, i.e.: 

the work done by the external forces is: 

a = I  

At time t the conserved energy is: 

WC = & x ( o )  = cZ(o)(Eo + Efle-t17a) (29) 

The dissipated energy will be the difference between the work done by the 
external forces and the conserved energy: 

wd = w - wc = E 2 ( o ) ( l  - ETtir,)E, (30) 

As in the previous case the deviatoric and the isotropic parts of these energies 
may be calculated, multiplying them by the constant factors $(I + v) and 
f (1  - 2v) respectively. 

The rate of energy dissipation is: 

c Constant rate o f  stress and creep 

Starting from the integral operator form of the constitutive equation based on 
creep compliance the method presented above can easily be adapted to 
compute the different parts of the stress energy for the case of constant rate of 
stress or creep. 
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EX P E R I M ENTAL R ES U LTS 

Tensile tests were carried out on two materials, Perspex (polymethyl meth- 
acrylate) and epoxy-resin (Versamid 140-40 % and Epikote 815-6073 at 
four constant strain-rates with differences of about one decade. The experi- 
mental set-up consisted of a 5-ton Instron Testing Machine, a strain-gage 
bridge and an additional recorder. Axial strain and load were recorded for 
each individual test. 

Another type of experiments was carried out for the determination of 
Poisson’s ratio. The results of these experiments show that Poisson’s ratio 
is practically constant and independent of the strain-rate for both materials, 
its values being: 

v = 0.395 for Perspex 

v = 0.400 for epoxy-resin 

The collocation method discussed in the Appendix was used for fitting 
the viscoelastic stress response of the materials to Eq. (14). It was found that 
for each constant strain-rate two time-dependent terms of series (Eq. (1 3)) 
in addition to the constant term lead to excellent fits. The five constants 
obtained for each strain-rate enable the calculation of the different parts of 
the stress-energy as given by Eqs. (20)-(23). The results, plotted versus strain, 
are shown in Figures 1-6. 

DISCUSSION 

According to Eqs. (20)-(23), for constant Poisson’s ratio, the deviatoric 
and isotropic parts are constant ratios of the stress-energy. 

Taking v = 0.4 the deviatoric part represents 93.3 % of the stress-energy 
while the isotropic part represents only 6.7 %. 

The total stress energy as well as the deviatoric and isotropic parts of it are 
depicted in Figure 1 for Perspex and in Figure 4 for epoxy-resin. It is seen 
that each of these energies is larger for higher strain-rates and obviously 
increases with the strain. 

For Perspex, the same conclusions may be drawn for the conserved strain- 
energy as shown in Figure 2 (i.e. larger energy corresponds to higher strain- 
rates and energy increases with strain), whereas the dissipated stress-energy 
is smaller for higher strain-rates but continues to increase with the strain 
(see Figure 3). 

The behavior of epoxy-resin has been found to be different. For the two 
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LONGITUDINAL STRAIN E (%) 

FIGURE 1 Stress-energy of Perspex. 

0 

FIGURE 2 Conserved stress-energy of Perspex. 
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FIGURE 4 Stress-energy of epoxy-resin. 
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LONGITUDINAL STRAIN € (Y.) 

FIGURE 5 Conserved stress-energy of epoxy-resin. 

FIGURE 6 Dissipated stress-energy of epoxy-resin. 
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ENERGY BALANCE OF A VISCOELASTIC MATERIAL 147 

higher strain-rates which were examined, the conserved stress-energy in- 
creases with strain-while for the two lower strain-rates, the conserved 
energy increases until the strain reaches a certain value and then decreases 
as shown in Figure 5 .  For the two lower strain-rates the dissipated stress- 
energy of epoxy-resin increases quickly and reaches relatively high values. 
This phenomenon can be explained by the fact that from a certain value of 
strain the rate of dissipation of energy is larger than the rate at which energy 
is produced by the external forces. 

The above-presented method can be used to compute the different parts of 
the stress-energy for constant rate of stress, stress-relaxation or creep. More- 
over, the method can be extended for more complicated loading histories. 

Finally it should be mentioned that the choice of the 2m + 1 constants 
governing the viscoelastic behavior of the material does not practically affect 
the results obtained. 

APPENDIX 

Determination of the parameters describing the viscoelastic 
behavior of material 

The problem is to determine the 2m + 1 constants (Eo, El, . . ., Em, T ~ ,  . . ., Tm)  

which describe the material behavior. Let us consider the case of constant 
strain-rate experiments where the stress is given by Eq. (14): 

CJ = 22[Eot + E,T,(~ - e-t/'a)] 

or: 

where : 
CJ 

CJ' = - 
21 

Ba = E Z T ~  ( 4  

Using a method as presented in Ref. 5 we shall choose the m relaxation 
times T,  in the range of the time-scale of the considered experiment. 

The remaining m + 1 constants will be obtained by using least-squares 
techniques. 

If the experimental values are q', UZ' ,  . . ., un' (n > m + l), expressing the n 
deviations vz of the experimental values ad' from the values calculated at ti, 
we obtain the system: 

vi = Eotr + B,(1 - - q' (4 
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148 s. B R ~ ~ L L E R  

We define the sum: 

H will be minimal if the following m + 1 conditions are satisfied: 
H = vava ( 4  

i3H aH 
aEo 
-= 

(a= 1 , 2 , , . . m )  

UTUB = UTa' (g) 

Conditions (f) lead to a system of normal equations: 

U is the coefficient matrix of (m + 1) x n terms 
- 

11 (1 - e- t l /r l )  . . . . . . . . . .  (1 - e - t l l rm)  

t 2  (1 - e-t2Ir1) . . . . . . . . . .  (1  - e - t ~ r r n )  

u = [  

In (1 - e - t n h n ) .  . . . . . . . .  . (1 - e - W r m )  
- 

B is the vector of the m + 1 unknowns 

B =  

a' is the vector of the free terms and U T  is the transpose of matrix U. 
The m + 1 parameters Eo, B1, . . .  Bm can now be calculated from the system 

of normal equations (g). 
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